Welcome to this deep dive into one of the most intriguing concepts in three-dimensional geometry:
Skew Lines and the methods to find the
shortest distance between them. This topic is a cornerstone for JEE Advanced, requiring a strong conceptual understanding and precise application of vector algebra.
---
### Understanding Skew Lines: The 3D Conundrum
In two-dimensional geometry, two distinct lines can either intersect at a single point or be parallel. There are no other possibilities. However, once we step into the three-dimensional world, a new scenario emerges: lines that are neither intersecting nor parallel. These are what we call
Skew Lines.
Imagine two airplanes flying in the sky. If their paths cross, they intersect. If they fly in the same direction, always maintaining the same separation, they are parallel. But what if one airplane is flying north at an altitude of 10,000 feet, and another is flying east at 15,000 feet? Their paths, if extended indefinitely, will never meet, nor are they parallel. Such flight paths represent skew lines.
Definition: Two lines in space are said to be
skew if they are neither parallel nor intersecting. This implies that they lie in different planes. If two lines are parallel or intersect, they must lie in the same plane (they are coplanar). Skew lines are non-coplanar.
Let's represent two lines $L_1$ and $L_2$ in vector form:
Line $L_1$: $vec{r} = vec{a_1} + lambda vec{b_1}$
Line $L_2$: $vec{r} = vec{a_2} + mu vec{b_2}$
Here:
* $vec{a_1}$ and $vec{a_2}$ are the position vectors of points on lines $L_1$ and $L_2$ respectively.
* $vec{b_1}$ and $vec{b_2}$ are the direction vectors of lines $L_1$ and $L_2$ respectively.
* $lambda$ and $mu$ are scalar parameters.
For $L_1$ and $L_2$ to be skew lines, two conditions must be met:
1.
Non-Parallel: Their direction vectors $vec{b_1}$ and $vec{b_2}$ are not collinear. That is, $vec{b_1}
e kvec{b_2}$ for any scalar $k$. This also means $vec{b_1} imes vec{b_2}
e vec{0}$.
2.
Non-Intersecting: There are no values of $lambda$ and $mu$ for which $vec{a_1} + lambda vec{b_1} = vec{a_2} + mu vec{b_2}$. Mathematically, this can be checked by evaluating the scalar triple product: $(vec{a_2} - vec{a_1}) cdot (vec{b_1} imes vec{b_2})
e 0$. If this scalar triple product is zero, the lines are either intersecting or parallel (coplanar). Since we've already established non-parallelism, a zero scalar triple product would mean they intersect. For skew lines, it must be non-zero.
---
### Shortest Distance Between Skew Lines
The shortest distance between two skew lines is the length of the unique common perpendicular segment connecting them. This common perpendicular segment is perpendicular to both lines.
Intuition: Imagine holding two pencils in space such that they are skew. The shortest distance between them would be if you could place a tiny third pencil that touches both, and is perpendicular to both. That tiny pencil's length is the shortest distance.
Let $P_1$ be a point on $L_1$ with position vector $vec{p_1} = vec{a_1} + lambda vec{b_1}$ and $P_2$ be a point on $L_2$ with position vector $vec{p_2} = vec{a_2} + mu vec{b_2}$.
The vector joining $P_1$ and $P_2$ is $vec{P_1P_2} = vec{p_2} - vec{p_1} = (vec{a_2} - vec{a_1}) + mu vec{b_2} - lambda vec{b_1}$.
For $vec{P_1P_2}$ to be the shortest distance vector, it must be perpendicular to both $vec{b_1}$ and $vec{b_2}$.
This means $vec{P_1P_2} cdot vec{b_1} = 0$ and $vec{P_1P_2} cdot vec{b_2} = 0$.
The direction of the common perpendicular to both lines $L_1$ and $L_2$ is given by the cross product of their direction vectors, i.e., $vec{n} = vec{b_1} imes vec{b_2}$. The unit vector in this direction is $hat{n} = frac{vec{b_1} imes vec{b_2}}{|vec{b_1} imes vec{b_2}|}$.
The shortest distance, $d$, is the projection of the vector connecting any point on $L_1$ (say $vec{a_1}$) to any point on $L_2$ (say $vec{a_2}$) onto the direction of the common perpendicular.
So, $d = | ext{projection of } (vec{a_2} - vec{a_1}) ext{ onto } hat{n}|$.
####
Derivation of Shortest Distance Formula (Vector Form):
Let $P_1$ be a point on line $L_1$ with position vector $vec{a_1}$, and $P_2$ be a point on line $L_2$ with position vector $vec{a_2}$.
The vector connecting these two points is $vec{P_1P_2} = vec{a_2} - vec{a_1}$.
The direction of the common perpendicular line segment between $L_1$ and $L_2$ is given by $vec{b_1} imes vec{b_2}$.
Let $vec{n} = vec{b_1} imes vec{b_2}$.
The shortest distance $d$ is the magnitude of the projection of the vector $vec{P_1P_2}$ onto the direction $vec{n}$.
$d = |frac{(vec{a_2} - vec{a_1}) cdot vec{n}}{|vec{n}|}|$
Substitute $vec{n} = vec{b_1} imes vec{b_2}$:
Shortest Distance (Vector Form):
$d = frac{|(vec{a_2} - vec{a_1}) cdot (vec{b_1} imes vec{b_2})|}{|vec{b_1} imes vec{b_2}|}$
This formula involves the scalar triple product in the numerator, which confirms the coplanarity condition: if the scalar triple product is zero, the lines are coplanar (either intersecting or parallel). For parallel lines, $vec{b_1} imes vec{b_2} = vec{0}$, making the denominator zero. So, this formula is exclusively for skew lines.
####
Shortest Distance Formula (Cartesian Form):
Let the two lines be:
$L_1: frac{x-x_1}{l_1} = frac{y-y_1}{m_1} = frac{z-z_1}{n_1}$
$L_2: frac{x-x_2}{l_2} = frac{y-y_2}{m_2} = frac{z-z_2}{n_2}$
Here, $vec{a_1} = x_1hat{i} + y_1hat{j} + z_1hat{k}$ and $vec{b_1} = l_1hat{i} + m_1hat{j} + n_1hat{k}$.
And $vec{a_2} = x_2hat{i} + y_2hat{j} + z_2hat{k}$ and $vec{b_2} = l_2hat{i} + m_2hat{j} + n_2hat{k}$.
Then, $vec{a_2} - vec{a_1} = (x_2-x_1)hat{i} + (y_2-y_1)hat{j} + (z_2-z_1)hat{k}$.
And $vec{b_1} imes vec{b_2} = egin{vmatrix} hat{i} & hat{j} & hat{k} \ l_1 & m_1 & n_1 \ l_2 & m_2 & n_2 end{vmatrix}$.
The scalar triple product $(vec{a_2} - vec{a_1}) cdot (vec{b_1} imes vec{b_2})$ can be written as a determinant:
Shortest Distance (Cartesian Form):
$d = frac{left| egin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \ l_1 & m_1 & n_1 \ l_2 & m_2 & n_2 end{vmatrix}
ight|}{sqrt{(m_1n_2 - m_2n_1)^2 + (n_1l_2 - n_2l_1)^2 + (l_1m_2 - l_2m_1)^2}}$
This formula looks more daunting but is essentially the Cartesian representation of the vector formula. The denominator is $|vec{b_1} imes vec{b_2}|$.
---
### Equation of the Line of Shortest Distance
Finding the equation of the line segment that represents the shortest distance requires finding the specific points $P_1$ and $P_2$ on each line.
Let $P_1$ be a point on $L_1$ and $P_2$ be a point on $L_2$ such that the vector $vec{P_1P_2}$ is perpendicular to both $vec{b_1}$ and $vec{b_2}$.
$vec{P_1} = vec{a_1} + lambda vec{b_1}$
$vec{P_2} = vec{a_2} + mu vec{b_2}$
The vector $vec{P_1P_2} = (vec{a_2} - vec{a_1}) + mu vec{b_2} - lambda vec{b_1}$.
For $vec{P_1P_2}$ to be the common perpendicular:
1. $vec{P_1P_2} cdot vec{b_1} = 0 implies [(vec{a_2} - vec{a_1}) + mu vec{b_2} - lambda vec{b_1}] cdot vec{b_1} = 0$
This expands to $(vec{a_2} - vec{a_1}) cdot vec{b_1} + mu (vec{b_2} cdot vec{b_1}) - lambda (vec{b_1} cdot vec{b_1}) = 0$ (Equation 1)
2. $vec{P_1P_2} cdot vec{b_2} = 0 implies [(vec{a_2} - vec{a_1}) + mu vec{b_2} - lambda vec{b_1}] cdot vec{b_2} = 0$
This expands to $(vec{a_2} - vec{a_1}) cdot vec{b_2} + mu (vec{b_2} cdot vec{b_2}) - lambda (vec{b_1} cdot vec{b_2}) = 0$ (Equation 2)
These two equations form a system of linear equations in terms of $lambda$ and $mu$. Solve for $lambda$ and $mu$.
Once $lambda$ and $mu$ are found, substitute them back into the equations for $vec{P_1}$ and $vec{P_2}$ to get the specific points $P_1$ and $P_2$.
The equation of the line of shortest distance can then be found using the two points $P_1$ and $P_2$:
$vec{r} = vec{P_1} + t(vec{P_2} - vec{P_1})$
Alternatively, the direction of the line of shortest distance is $vec{b_1} imes vec{b_2}$. If you know one point (say $P_1$), the equation is $vec{r} = vec{P_1} + t (vec{b_1} imes vec{b_2})$. This is less specific for the segment, but gives the line containing the segment.
---
###
JEE Focus: Shortest Distance Between Parallel Lines
While the primary focus is on skew lines, it's crucial to distinguish this from parallel lines. If two lines are parallel, their direction vectors are proportional ($vec{b_1} = kvec{b_2}$). In this case, $vec{b_1} imes vec{b_2} = vec{0}$, and the skew line formula becomes undefined.
For parallel lines, $L_1: vec{r} = vec{a_1} + lambda vec{b}$ and $L_2: vec{r} = vec{a_2} + mu vec{b}$.
The shortest distance $d$ is given by:
$d = frac{|(vec{a_2} - vec{a_1}) imes vec{b}|}{|vec{b}|}$
JEE Tip: Always check if the lines are parallel first by examining their direction vectors. If they are, use the parallel lines formula. If not, proceed to check the scalar triple product. If it's zero, they intersect (distance is 0). If non-zero, they are skew, and then use the skew lines formula.
---
### Examples
Let's solidify our understanding with some examples.
#### Example 1: Finding Shortest Distance (Vector Form)
Find the shortest distance between the lines:
$L_1: vec{r} = (hat{i} + 2hat{j} + hat{k}) + lambda(hat{i} - hat{j} + hat{k})$
$L_2: vec{r} = (2hat{i} - hat{j} - hat{k}) + mu(2hat{i} + hat{j} + 2hat{k})$
Step 1: Identify $vec{a_1}, vec{a_2}, vec{b_1}, vec{b_2}$.
$vec{a_1} = hat{i} + 2hat{j} + hat{k}$
$vec{a_2} = 2hat{i} - hat{j} - hat{k}$
$vec{b_1} = hat{i} - hat{j} + hat{k}$
$vec{b_2} = 2hat{i} + hat{j} + 2hat{k}$
Step 2: Check for parallelism.
$vec{b_1}$ and $vec{b_2}$ are not proportional, e.g., $1/2
e -1/1$. So, the lines are not parallel.
Step 3: Calculate $vec{a_2} - vec{a_1}$.
$vec{a_2} - vec{a_1} = (2hat{i} - hat{j} - hat{k}) - (hat{i} + 2hat{j} + hat{k})$
$vec{a_2} - vec{a_1} = hat{i} - 3hat{j} - 2hat{k}$
Step 4: Calculate $vec{b_1} imes vec{b_2}$.
$vec{b_1} imes vec{b_2} = egin{vmatrix} hat{i} & hat{j} & hat{k} \ 1 & -1 & 1 \ 2 & 1 & 2 end{vmatrix}$
$= hat{i}(-1 cdot 2 - 1 cdot 1) - hat{j}(1 cdot 2 - 1 cdot 2) + hat{k}(1 cdot 1 - (-1) cdot 2)$
$= hat{i}(-2 - 1) - hat{j}(2 - 2) + hat{k}(1 + 2)$
$= -3hat{i} + 0hat{j} + 3hat{k} = -3hat{i} + 3hat{k}$
Step 5: Calculate $|vec{b_1} imes vec{b_2}|$.
$|vec{b_1} imes vec{b_2}| = sqrt{(-3)^2 + 3^2} = sqrt{9 + 9} = sqrt{18} = 3sqrt{2}$
Step 6: Calculate the scalar triple product $(vec{a_2} - vec{a_1}) cdot (vec{b_1} imes vec{b_2})$.
$(hat{i} - 3hat{j} - 2hat{k}) cdot (-3hat{i} + 3hat{k})$
$= (1)(-3) + (-3)(0) + (-2)(3)$
$= -3 + 0 - 6 = -9$
Since this is non-zero, the lines are skew.
Step 7: Apply the shortest distance formula.
$d = frac{|(vec{a_2} - vec{a_1}) cdot (vec{b_1} imes vec{b_2})|}{|vec{b_1} imes vec{b_2}|} = frac{|-9|}{3sqrt{2}} = frac{9}{3sqrt{2}} = frac{3}{sqrt{2}} = frac{3sqrt{2}}{2}$ units.
---
#### Example 2: Finding the Equation of the Line of Shortest Distance (Cartesian Form)
Find the shortest distance and the equation of the line of shortest distance between the lines:
$L_1: frac{x-3}{1} = frac{y-5}{-2} = frac{z-7}{1}$
$L_2: frac{x+1}{7} = frac{y+1}{-6} = frac{z+1}{1}$
Step 1: Convert to Vector Form (or identify components).
$vec{a_1} = 3hat{i} + 5hat{j} + 7hat{k}$
$vec{b_1} = hat{i} - 2hat{j} + hat{k}$
$vec{a_2} = -hat{i} - hat{j} - hat{k}$
$vec{b_2} = 7hat{i} - 6hat{j} + hat{k}$
Step 2: Check for parallelism.
$vec{b_1}$ and $vec{b_2}$ are not proportional ($1/7
e -2/-6$). Not parallel.
Step 3: Calculate $vec{a_2} - vec{a_1}$.
$vec{a_2} - vec{a_1} = (-1-3)hat{i} + (-1-5)hat{j} + (-1-7)hat{k} = -4hat{i} - 6hat{j} - 8hat{k}$
Step 4: Calculate $vec{b_1} imes vec{b_2}$.
$vec{b_1} imes vec{b_2} = egin{vmatrix} hat{i} & hat{j} & hat{k} \ 1 & -2 & 1 \ 7 & -6 & 1 end{vmatrix}$
$= hat{i}(-2 - (-6)) - hat{j}(1 - 7) + hat{k}(-6 - (-14))$
$= hat{i}(-2+6) - hat{j}(1-7) + hat{k}(-6+14)$
$= 4hat{i} + 6hat{j} + 8hat{k}$
Step 5: Calculate $|vec{b_1} imes vec{b_2}|$.
$|vec{b_1} imes vec{b_2}| = sqrt{4^2 + 6^2 + 8^2} = sqrt{16 + 36 + 64} = sqrt{116}$
Step 6: Calculate $(vec{a_2} - vec{a_1}) cdot (vec{b_1} imes vec{b_2})$.
$(-4hat{i} - 6hat{j} - 8hat{k}) cdot (4hat{i} + 6hat{j} + 8hat{k})$
$= (-4)(4) + (-6)(6) + (-8)(8)$
$= -16 - 36 - 64 = -116$
Since this is non-zero, the lines are skew.
Step 7: Shortest Distance.
$d = frac{|-116|}{sqrt{116}} = frac{116}{sqrt{116}} = sqrt{116} = 2sqrt{29}$ units.
Step 8: Find the equation of the line of shortest distance.
Let $P_1(3+lambda, 5-2lambda, 7+lambda)$ be a point on $L_1$.
Let $P_2(-1+7mu, -1-6mu, -1+mu)$ be a point on $L_2$.
The vector $vec{P_1P_2} = (-1+7mu - (3+lambda))hat{i} + (-1-6mu - (5-2lambda))hat{j} + (-1+mu - (7+lambda))hat{k}$
$vec{P_1P_2} = (-4+7mu-lambda)hat{i} + (-6-6mu+2lambda)hat{j} + (-8+mu-lambda)hat{k}$
$vec{P_1P_2}$ must be perpendicular to $vec{b_1}$ and $vec{b_2}$.
We know $vec{P_1P_2}$ is in the direction of $vec{b_1} imes vec{b_2} = 4hat{i} + 6hat{j} + 8hat{k}$.
So, $vec{P_1P_2}$ must be proportional to $4hat{i} + 6hat{j} + 8hat{k}$. Let $vec{P_1P_2} = k(4hat{i} + 6hat{j} + 8hat{k})$.
Equating components:
$-4+7mu-lambda = 4k$ (i)
$-6-6mu+2lambda = 6k$ (ii)
$-8+mu-lambda = 8k$ (iii)
Divide (ii) by 2 and (iii) by 2:
$-3-3mu+lambda = 3k$ (ii')
$-4+0.5mu-0.5lambda = 4k$ (iii') - This is becoming complicated due to 'k'.
A more direct way to solve for $lambda$ and $mu$ is to use the dot product conditions:
1. $vec{P_1P_2} cdot vec{b_1} = 0$:
$(-4+7mu-lambda)(1) + (-6-6mu+2lambda)(-2) + (-8+mu-lambda)(1) = 0$
$-4+7mu-lambda + 12+12mu-4lambda - 8+mu-lambda = 0$
$0 + 20mu - 6lambda = 0 implies 10mu - 3lambda = 0$ (Eq A)
2. $vec{P_1P_2} cdot vec{b_2} = 0$:
$(-4+7mu-lambda)(7) + (-6-6mu+2lambda)(-6) + (-8+mu-lambda)(1) = 0$
$-28+49mu-7lambda + 36+36mu-12lambda - 8+mu-lambda = 0$
$0 + 86mu - 20lambda = 0 implies 43mu - 10lambda = 0$ (Eq B)
From (Eq A): $lambda = frac{10}{3}mu$.
Substitute into (Eq B): $43mu - 10(frac{10}{3}mu) = 0$
$43mu - frac{100}{3}mu = 0$
$frac{129mu - 100mu}{3} = 0 implies frac{29mu}{3} = 0 implies mu = 0$.
If $mu = 0$, then $lambda = 0$.
Substitute $lambda=0$ into $P_1$:
$P_1 = (3+0, 5-2(0), 7+0) = (3, 5, 7)$
Substitute $mu=0$ into $P_2$:
$P_2 = (-1+7(0), -1-6(0), -1+0) = (-1, -1, -1)$
The points on the lines giving the shortest distance are $P_1(3, 5, 7)$ and $P_2(-1, -1, -1)$.
The shortest distance is indeed the distance between these two points:
$d = sqrt{(-1-3)^2 + (-1-5)^2 + (-1-7)^2} = sqrt{(-4)^2 + (-6)^2 + (-8)^2}$
$d = sqrt{16 + 36 + 64} = sqrt{116} = 2sqrt{29}$ (matches our earlier calculation).
The equation of the line of shortest distance (passing through $P_1$ and $P_2$) is:
$vec{r} = vec{P_1} + t(vec{P_2} - vec{P_1})$
$vec{P_2} - vec{P_1} = (-4hat{i} - 6hat{j} - 8hat{k})$
$vec{r} = (3hat{i} + 5hat{j} + 7hat{k}) + t(-4hat{i} - 6hat{j} - 8hat{k})$
Or in Cartesian form:
$frac{x-3}{-4} = frac{y-5}{-6} = frac{z-7}{-8}$
This can be simplified by dividing the denominators by -2:
Equation of Line of Shortest Distance:
$frac{x-3}{2} = frac{y-5}{3} = frac{z-7}{4}$
This in-depth analysis of skew lines and shortest distance calculation, including the derivation and examples, provides a robust foundation for tackling JEE problems. Remember the key: identify the type of lines first, then apply the appropriate formula and methodology.