| Region | Majority Carriers | Minority Carriers | Immobile Ions |
|---|---|---|---|
| n-side (outside depletion region) | Electrons | Holes | Neutral donor atoms |
| p-side (outside depletion region) | Holes | Electrons | Neutral acceptor atoms |
| Depletion Region (n-side) | Absent | Absent | Positive donor ions |
| Depletion Region (p-side) | Absent | Absent | Negative acceptor ions |
| P-N Junction Diode I-V Characteristics | |
|---|---|
Key Regions:
The curve clearly illustrates the diode's ability to conduct current easily in one direction (forward) and block it in the other (reverse), making it a fundamental component for rectification. | |
Welcome to the 'Mnemonics and Short-cuts' section for p–n junction diodes! Remembering key characteristics and applications, especially the I-V curve, is crucial for both board exams and JEE. Here are some quick memory aids to help you ace this topic.
By using these simple mnemonics, you can quickly recall the fundamental properties and behaviors of p-n junction diodes, which are essential for solving problems and answering conceptual questions in both CBSE and JEE exams. Keep practicing and applying them!
Mastering the p-n junction diode is crucial for electronic devices. These quick tips will help you consolidate key concepts and perform better in exams.
The diode's behavior depends critically on how it's biased:
| Feature | Forward Bias | Reverse Bias |
|---|---|---|
| Depletion Region | Narrows | Widens |
| Potential Barrier | Decreases | Increases |
| Current Magnitude | mA (large) | µA (very small) |
Remember these tips to efficiently tackle questions on p-n junction diodes. Good luck!
Welcome to the intuitive understanding of p-n junction diodes, their I-V characteristics, and applications. Think of a diode as a 'one-way valve' for electricity – it allows current to flow easily in one direction but strongly resists it in the opposite direction.
A p-n junction is formed when a p-type semiconductor (rich in 'holes', or positive charge carriers) is joined with an n-type semiconductor (rich in 'electrons', or negative charge carriers).
The I-V (Current-Voltage) characteristics describe how the current through the diode changes with the voltage applied across it. This is where the 'one-way valve' analogy truly shines.
When the positive terminal of an external voltage source is connected to the p-side and the negative terminal to the n-side, the diode is forward biased.
When the negative terminal of an external voltage source is connected to the p-side and the positive terminal to the n-side, the diode is reverse biased.
The overall I-V characteristic curve graphically shows this unidirectional conduction: high current in forward bias (after knee voltage) and almost zero current in reverse bias (until breakdown).
The primary application of a p-n junction diode stems from its ability to conduct current predominantly in one direction.
Understanding these fundamental characteristics and how they are leveraged in simple applications is crucial for advanced topics in electronics.
The p–n junction diode is a fundamental building block in almost all electronic circuits. Its unique ability to conduct current predominantly in one direction (forward bias) and block it in the other (reverse bias), stemming directly from its I–V characteristics, makes it indispensable for a wide array of applications.
For both JEE and CBSE, understanding these applications, particularly rectification (half-wave and full-wave) and Zener diode for voltage regulation, is critical. Questions often involve circuit diagrams, calculation of output voltage/current, and identification of the diode's role in a given circuit. Be prepared to explain the working principle of these applications based on the diode's I-V characteristics.
Mastering these real-world applications solidifies your conceptual understanding of the p–n junction diode's behavior and prepares you for practical problems!
Understanding the behavior of a p–n junction diode, especially its I–V characteristics, can be made easier through simple analogies. These comparisons help visualize abstract concepts like depletion regions, barrier potential, and current flow under different biasing conditions.
1. The "Water Dam" Analogy for p–n Junction Formation and Barrier Potential
2. The "One-Way Valve" or "Check Valve" Analogy for Diode Action
3. The "Toll Booth" Analogy for I–V Characteristics
These analogies simplify complex semiconductor physics into relatable scenarios, aiding in the comprehension of diode behavior, which is crucial for both JEE Main and board exams.
To fully grasp the concepts of p–n junction diodes, their current-voltage (I–V) characteristics, and various applications, a strong foundation in the following topics is essential. Ensure you are comfortable with these before proceeding.
Mastering these foundational concepts will provide a solid springboard for diving into the intricacies of p-n junction formation, its biasing, and the detailed analysis of its I-V characteristics and diverse applications in electronics.
By being mindful of these common traps, you can approach diode-related problems with greater precision and avoid losing marks on easily preventable mistakes. Good luck!
Master the essentials of p-n junction diodes for exam success!
Biasing refers to applying an external DC voltage across the junction.
This graph plots the current (I) through the diode against the voltage (V) across it.
The primary application exploits its unidirectional conduction property.
Keep practicing circuit analysis problems to solidify your understanding of diode behavior!
A systematic approach to solving problems involving p–n junction diodes is crucial for success in competitive exams. Understanding the diode's I–V characteristics and its behavior under different biasing conditions is key.
By following these steps, you can systematically approach and solve a wide range of problems involving p–n junction diodes and their applications.
For the CBSE Board Examinations, understanding the p–n junction diode is fundamental. The focus is primarily on conceptual clarity, diagrams, and basic applications, particularly rectifiers. Memorization of formulas is less critical than understanding the underlying physics.
This is a critical section for conceptual questions.
This is frequently asked as a direct question, requiring both the graph and its explanation.
Rectification is a very high-priority topic for CBSE, often involving circuit diagrams and waveforms.
CBSE Exam Tip:
Practice drawing all relevant circuit diagrams, I-V characteristics, and input/output waveforms neatly and accurately. These are frequently assessed and carry significant marks. Conceptual understanding of 'why' and 'how' is more important than complex calculations.
For JEE Main, the p–n junction diode is a fundamental topic, often tested for its I–V characteristics and practical applications, especially rectifiers. Mastery of this section requires a strong understanding of both qualitative behavior and quantitative analysis of circuits.
This is a high-yield area for JEE. You must know the circuit diagrams, working, and output waveforms for:
Success Mantra: Practice drawing the circuits and waveforms for rectifiers. Understand the quantitative differences in efficiency, ripple factor, and PIV between different rectifier types. Be prepared to analyze simple diode circuits, calculating currents and voltages under various biasing conditions.
No CBSE problems available yet.
No JEE problems available yet.
No videos available yet.
No images available yet.
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
| Parameter | DC Value (V, I) | Change $(Delta V, Delta I)$ |
|---|---|---|
| Operating Point 1 | $V_1 = 0.80 ext{ V}, I_1 = 20 ext{ mA}$ | $Delta V = 0.05 ext{ V}$ |
| Operating Point 2 | $V_2 = 0.85 ext{ V}, I_2 = 30 ext{ mA}$ | $Delta I = 10 ext{ mA}$ |
| Dynamic Resistance $r_d = frac{Delta V}{Delta I} = frac{0.05 ext{ V}}{10 imes 10^{-3} ext{ A}} = mathbf{5 Omega}$ | ||
No summary available yet.
No educational resource available yet.