| Concept | What it is | Analogy | Key Takeaway |
|---|---|---|---|
| Ohm's Law | Relationship between V, I, R: V = IR | Water flow (I) driven by pressure (V) through a pipe (R) | Current is directly proportional to voltage, inversely to resistance (for ohmic conductors at constant temp). |
| Resistance | Opposition to current flow | Narrow/clogged pipe | Depends on length, area, material (resistivity), and temperature. |
| Meter Bridge | Device to measure unknown resistance | See-saw for balancing weights | Uses Wheatstone bridge principle to find unknown R by balancing ratios of resistances/lengths. |
| Potentiometer | Device to measure EMF/PD accurately without drawing current | Super-precise voltage ruler | Compares an unknown EMF to a known potential drop along a wire at null deflection. |
| Components of Ohm's Law Verification Circuit | |
|---|---|
| Battery (Power Supply) | Provides the potential difference (voltage). |
| Resistor (R) | The conductor whose ohmic nature is to be verified. |
| Ammeter (A) | Measures the current flowing *through* the resistor. Connected in series. (Ideally, zero resistance). |
| Voltmeter (V) | Measures the potential difference *across* the resistor. Connected in parallel. (Ideally, infinite resistance). |
| Rheostat (Rh) | A variable resistor used to change the current in the circuit and thus the voltage across the resistor. |
| Key (K) | To switch the circuit ON/OFF. |
Here are some mnemonics and short-cuts to help you remember key aspects of Ohm's Law verification, Meter Bridge, and Potentiometer experiments, crucial for both JEE and Board exams.
Imagine electricity flowing through a wire like water flowing through a pipe. Ohm's Law, given by V = IR, establishes a fundamental relationship:
Intuition for Verification: Ohm's Law states that for a given material (resistor) at a constant temperature, if you double the "push" (voltage), you should double the "flow" (current), because the "obstruction" (resistance) remains constant. When you plot a V-I graph, you expect a straight line passing through the origin, confirming this direct proportionality. The slope of this line gives you the resistance (R = V/I).
The Meter Bridge is essentially a practical application of the Wheatstone's Bridge principle, which is about *balancing* electrical potentials.
This allows us to determine an unknown resistance by comparing it to a known one, based on the simple ratio of lengths of the meter bridge wire.
The potentiometer is an extremely accurate device for measuring or comparing EMFs/potential differences because it uses a null deflection method, similar to the Meter Bridge, but for voltage measurement.
By comparing the unknown EMF's balancing length with that of a standard cell (or the potential gradient), we can determine the unknown EMF or even unknown resistance if used in a specific configuration (like comparing terminal PDs).
The experimental verification of Ohm's Law and the use of devices like the meter bridge and potentiometer are fundamental concepts in electricity. Beyond their role in laboratory settings, the principles underlying these experiments have widespread real-world applications, forming the backbone of various technologies and industries.
Ohm's Law (V = IR) is arguably the most fundamental law in electrical engineering, with ubiquitous applications:
The meter bridge is a practical application of the Wheatstone bridge, which is used for precise resistance measurement. Its principle finds application in:
The potentiometer's ability to measure EMF without drawing current, and its principle of precise voltage division, make it highly versatile:
JEE Main & CBSE Relevance: While direct questions on specific real-world applications might be less frequent, understanding these connections deepens conceptual clarity, which is crucial for solving application-based problems and understanding the 'why' behind these experiments.
To effectively understand and perform experiments related to Ohm's law verification, meter bridge, and potentiometer, a strong foundation in several basic electrical concepts and circuit principles is essential. These prerequisites ensure that you grasp the underlying physics and experimental methodology correctly.
Mastering these foundational concepts will make the experimental setup, procedures, and calculations for Ohm's law, meter bridge, and potentiometer experiments much clearer and more manageable.
Understanding the experimental setups for Ohm's Law verification, resistance measurement by meter bridge, and EMF/internal resistance measurement by potentiometer is crucial. However, exams often introduce subtle conditions or ask questions that highlight common misconceptions and procedural errors. Be vigilant for the following traps:
This is arguably the most significant trap in meter bridge problems for JEE Main. Ideal meter bridges assume zero resistance for connecting wires and thick copper strips. In reality, these have some resistance. End corrections (e and f) account for the small potential drop near the ends of the wire. If not explicitly mentioned as negligible, you must consider them. The corrected lengths become (l + e) and (100 - l + f).
JEE Specific: Many numerical problems in JEE revolve around calculating end corrections or using them to find unknown resistances, especially when the experiment is repeated with interchanged resistors.
By being aware of these common pitfalls, you can approach experimental physics problems with greater precision and avoid losing marks on tricky questions.
These experiments are fundamental for understanding basic electricity and are frequently tested in both CBSE board exams and JEE Main. Focus on the underlying principles, circuit diagrams, and potential sources of error.
| Equation | Variables |
|---|---|
| R/S = l1 / (100 - l1) | R = Unknown resistance S = Standard resistance (from resistance box) l1 = Length of wire from R side to null point (100-l1) = Length from S side to null point |
Mastering these experimental setups and their underlying principles is crucial for scoring well in the experimental skills section of JEE Main and for practical exams in CBSE.
For CBSE board examinations, understanding the experimental procedures, circuit diagrams, observations, calculations, and precautions for these experiments is paramount. While JEE focuses on conceptual depth and problem-solving, CBSE emphasizes hands-on practical skills and theoretical grounding for viva-voce and practical exams.
This experiment aims to establish the relationship between potential difference (V) across a metallic conductor and the current (I) flowing through it at a constant temperature. It is a fundamental experiment in the CBSE curriculum.
The meter bridge is a practical application of the Wheatstone bridge principle, used to find an unknown resistance accurately.
While the potentiometer is primarily used in CBSE labs for comparing EMFs of cells and determining the internal resistance of a cell, it can indirectly be used for resistance measurement. Directly measuring an unknown resistance using a potentiometer is less common in CBSE than the meter bridge.
CBSE Exam Tip: For practical exams and viva-voce, focus on understanding the underlying principles, the function of each component, potential sources of error, and appropriate precautions for each experiment. Practice drawing accurate circuit diagrams.
Mastering experimental nuances for conceptual clarity and problem-solving prowess.
While conceptually straightforward, JEE often tests the practical aspects and sources of error in this experiment.
The meter bridge is a practical application of the Wheatstone bridge. JEE frequently tests end corrections and calculation of specific resistance.
The potentiometer's strength lies in measuring EMF without drawing current, making it highly accurate.
Focus on understanding the underlying principles and error analysis for these experiments to ace related JEE questions.
No CBSE problems available yet.
No JEE problems available yet.
No videos available yet.
No images available yet.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
Using the example above where $L_1 = 40.0$ cm, $e=0.4$ cm, and $f=0.6$ cm:
| Parameter | Formula | Correct Value (cm) |
|---|---|---|
| True $L_1'$ | $L_1 + e$ | $40.0 + 0.4 = 40.4$ cm |
| True $L_2'$ | $(100 - L_1) + f$ | $(60.0) + 0.6 = 60.6$ cm |
| Correct Ratio R/S | $L_1'/L_2'$ | $40.4 / 60.6$ |
The difference between the ideal ratio (0.6667) and the corrected ratio (0.6667) is marginal in this symmetric case, but crucial for non-ideal measurements.
No summary available yet.
No educational resource available yet.